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Information-Entropy and Purity of Decoherence
Functions

N. Linden1
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The structure of the spaces of propositions and decoherence functions in the
consistent-histor ies approach to generalized quantum theory is outlined. It is
shown that although the space of decoherence functions is convex, there are no
pure decoherence functions. A definition of information-entropy is described
which no needs no a priori notion of time.

1. INTRODUCTION

A particularly attractive feature of the consistent-histories program, as

developed by Gell-Mann and Hartle (see, for example, Hartle, 1993), follow-

ing pioneering work by Griffiths (1984) and OmneÁ s (1992), is that it offers

a framework for quantum theory in which time potentially plays a subsidiary

role. The central idea of the scheme is that under certain consistency conditions

it is possible to assign probabilities to generalized histories of a system. In
normal quantum theory such histories are represented by time-ordered strings

of propositions; however, the scheme allows for much more general histories

in which there is no a priori notion of time ordering. These generalized

histories are expected to play a key role in application of the formalism to

quantum gravity.

In the generalized version of the history scheme developed in Isham
(1994), Isham and Linden (1994), and Isham et al. (1994) the central mathe-

matical ingredients are a set of histories 83 (or, more accurately, the set of

propositions about histories) and an associated set of decoherence functions

$, with the pair (83, $) being regarded as the analogue in the history theory
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of the pair (+, 6) in standard quantum theory, where + is the lattice of

propositions and 6 is the space of states on +.

2. THE CONVEX SET OF DECOHERENCE FUNCTIONS

Isham (1994) and Isham and Linden (1994) describe how the space 83
encodes the generalized quantum temporal logic of the propositions. As
explained there, there are compelling reasons for postulating that the natural

mathematical structure on 83 is that of an orthoalgebra (Foulis et al.,
1992) with the three orthoalgebra operations % , Ø , and , corresponding ,

respectively, to the disjoint sum, negation, and coarse-graining operations

involved by Gell-Mann and Hartle. One example of an orthoalgebra is the
lattice of projection operators on a Hibert space. In this case, the operation

% is defined on disjoint pairs of projectors P, Q with P % Q 5 P Ú Q,

where, as usual, P Ú Q denotes the projector onto the linear span of the

subspaces onto which P and Q project. In the example of a lattice, Ú is

defined on all projectors not only on pairs that are disjoint.

Throughout this article I will consider the case where the orthoalgebra
of propositions is the space of projectors on a Hilbert space 9, which, for

the sake of simplicity, will be taken to be finite-dimensional. This Hilbert

space may arise from having propositions at n time points, in which case 9
5 ^ n * (see below), but it need not do so. A crucial ingredient in the

construction of the information-entropy will be the dimension of a proposition,

defined to be the dimension of the projector that represents the proposition
on 9.

One important motivation for this framework is the fact that discrete-

time histories in quantum theory can indeed be given the structure of an

orthoalgebra. The key idea is that an n-time, homogeneous history proposition

( a t1, a t2, . . . , a tn) can be associated with the operator a t1 ^ a t2 ^ ¼ ^ a tn

which is a genuine projection operator on the n-fold tensor product *t1 ^
*t2 ^ ¼ ^ *tn of n-copies of the Hilbert-space * on which the canonical

theory is defined (Isham, 1994; Isham and Linden, 1994).

As an example of how this tensor product structure encodes the temporal

logic, consider the case of propositions at two times and the homogeneous

history proposition ` a and then b ’ (represented by the projection operator a
^ b on * ^ *). The negation of this proposition is represented by 1 ^ 1

2 a ^ b , which may be rewritten

1 ^ 1 2 a ^ b 5 ((1 2 a ) ^ b ) 1 ( a ^ (1 2 b ))

1 ((1 2 a ) ^ (1 2 b ))

which precisely encodes the fact that `not ( a and then b )’ is equivalent to
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the proposition `(not a and then b ) or ( a and then not b ) or (not a and then

not b ).’ The tensor product structure of temporal propositions in this case

also suggests the intriguing possibility of temporal entanglement (Isham and
Linden, 1995).

Isham and Linden (1994) argue that the properties of the decoherence

function d: 83 3 83 ® C are:

(a) Hermiticity: d ( a , b ) 5 d ( b , a )* for all a , b P 83.

(b) Positivity: d( a , a ) $ 0 for all a P 83.

(c) Additivity: if a and b are disjoint, then, for all g , d ( a % b , g ) 5
d ( a , g ) 1 d( b , g ).

(d) Normalization: d(1, 1) 5 1.

In the case that 83 is the lattice of projectors on a finite-dimensional

Hilbert space 9 (not necessarily arising as a temporal tensor product), it is

possible to classify all decoherence functions satisfying these properties as

follows (Isham et al., 1994).2 Decoherence functions are in one-to-one corre-
spondence with `decoherence operators’ X on 9 ^ 9 according to the rule

d( a , b ) 5 tr9 ^ 9( a ^ b X) (1)

where the decoherence operator X satisfies (a) MXM 5 X ² , where M (u ^
v) : 5 v ^ u; (b) tr9 ^ 9( a ^ a X) $ 0; (c) tr9 ^ 9(X) 5 1. X need not be a positive

operator. Indeed, Isham and Linden (1994) give examples of decoherence
functions in standard quantum theory where d ( a , a ) . d ( b , b ) for two

histories a and b for which a # b , and we also found decoherence functions

and histories g for which d ( g , g ) . 1.

It may be noted that if d1 and d2 are decoherence functions, then so is

d( l ) : 5 l d1 1 (1 2 l )d2 (2)

where l is a real constant, 0 # l # 1. Thus the space of decoherence
functions is a convex set. However, if X is a decoherence operator, then so

are X 1 Y and X 2 Y, where Y 5 i (s1 ^ s2 2 s2 ^ s1) for any self-adjoint

operators s1, s2 on 9. Thus we may write the decoherence function dX

associated to X as dX [ 1/2d(X 1 Y) 1 1/2d(X 2 Y). The decoherence functions

d(X 1 Y) and d(X 2 Y) associated to the decoherence operators X 1 Y and X 2 Y
are different from dX in general. Thus any decoherence function may be

written as a convex sum and so there are no pure decoherence functions.

3. INFORMATION-ENTROPY

I turn now to the question of defining the information-entropy in the

context of a window and for a given decoherence function (Isham and Linden,

2 Generalizations of this result have been given by Wright (1995) and Rudolph (1996) and
other aspects of the structure of the space of decoherence functions are described by Schreck-
enberg (1997).
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1997). What we seek is a notion of information-entropy that can be used in

generalized history quantum theory. In particular, the definition should be

applicable in principle to systems in which the concept of time is not funda-
mental and may emerge only in some coarse-grained way. Furthermore, even

if the system has a standard notion of time, the information-entropyÐ which

encodes the number of bits required to describe the systemÐ may not necessar-

ily all reside in the initial state. The description of a system in this generalized

type of quantum theory is given entirely in terms of the set of propositions

and the values of the decoherence function, so we must construct our measure
of information-entropy solely from these.

Each consistent set or ª windowº gives a probability distribution Prob( a i )

5 d ( a i , a i) for the histories { a i}
N
i 5 1. Thus, a simple first attempt at such a

definition might be Itrial 5 2 S n
i 5 1 d ( a i , a i) log d ( a i , a i). However, this does

not decrease under refinement of the consistent set; (indeed the coarsest

possible window {0, 1}, where 1 is the history which is always realized, has
the minimum value (zero) of Itrial.

In a very interesting paper, Hartle (1995), proposes an approach to these

issues using maximum entropy ideas, and this paper was part of the motivation

for what follows [see also Gell-Mann and Hartle, (1995), Halliwell (1993),

and Kent (1996) for other discussions of information-entropy in the histories
approach]. However, it is possible to arrive at a simple definition of informa-

tion-entropy in generalized quantum mechanics more directly. Specifically,

Isham and Linden (1997) put forward the following definition of the informa-

tion-entropy for a decoherence functon and window:

Id,W : 5 2 S
N

i 5 1
d ( a i , a i) log

d ( a i , a i)

(dim a i /dim 9)2 (3)

The considerations leading to (3) are described in Isham and Linden

(1997) and a number of properties developed. In particular, it is shown that
it has the key property that it decreases under refinement of the consistent set.

A natural possibility is to define the information-entropy of the decoher-

ence function d as the minimum over all consistent sets of Id, W , i.e.,

Id : 5 min
W

Id, W (4)

In examples it is found that the consistent set (or sets) which minimize

Id,W are naturally associated with the decoherence operator X. It is also shown

how in the case of the history version of standard quantum mechanics with
unitary time evolution, the value of the information-entropy defined by (4)

is (up to normalization) 2 tr( r log r ) for the case when histories containing

homogeneous projectors are considered; thus all the information-entropy lies

in the initial density matrix in this case.
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It is worth noting that fundamental to the consistent-histories approach

from the start has been the idea of taking the sum of two homogeneous

histories in standard n-time quantum theory to form inhomogeneous histories.
However, the idea of the dimension of an inhomogeneous history is difficult

to understand unless, as Isham and I have frequently advocated, histories are

identified with projection operators on an n-fold tensor product space.

I have called the function Id,W a measure of information-entropy for

generalized quantum mechanics as it has key properties that it descreases

under refinement and it is small for consistent windows in which the probabil-
ity is peaked around histories of small dimensions. While, for reasons

described in Isham and Linden (1997), I have taken (3) as the measure of

information-entropy, it should be noted that any function of the form

I x
d,W 5 2 S

N

i 5 1
d ( a i , a i) log F d( a i , a i)

(dim a i /dim 9)x G (5)

where x $ 1 is a real number, also has the key property that it decreases
under refinement of the consistent set. The case x 5 1 may turn out to be

the most interesting, as in this case the measure of information is (minus) the

Kullback information of the distribution {d ( a i , a i)} relative to a `maximally

ignorant’ distribution on the set { a i} which has Prob( a i) 5 dim( a i)/dim 9.

Interestingly, Gell-Mann and Hartle (1995) have considered measures of

this sort as a result of rather different considerations, such as the idea of
thermodynamic depth (Lloyd and Pagels, 1988). The relationship between

the measures with different values of x needs to be understaood.

I anticipate that this definition of information-entropyÐ which is a

straightforward function on the class of consistent sets with attractive proper-

ties under refinementÐ may help in the development of a set selection crite-
rion3: for example, in the case that the system naturally divides into a

subsystem and the `environment’ this might be done by selecting the set

which minimizes the information-entropy of the distinguished subsystem

(see, for example, Zurek, 1994). In this context, it should be noted that if

our vector space 9 happens to arise as the tensor product of two spaces 91

and 92, then the definition of information-entropy has precisely the behavior

that might be hoped for; for if one considers a consistent window in which

each history proposition a is a tensor product a 5 a 1 ^ a 2, with a 1 P P (91)

and a 2 P P (92), then the information-entropy is the sum of the information-

entropy associated to each subsystem.

3 The importance of this issue for the whole framework has been discussed by Gell-Mann and
Hartle (1995) and Dowker and Kent (1995).
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